Segmentation of cDNA microarray images by kernel density estimation

نویسندگان

  • Tai-Been Chen
  • Henry Horng-Shing Lu
  • Yun-Shien Lee
  • Hsiu-Jen Lan
چکیده

The segmentation of cDNA microarray spots is essential in analyzing the intensities of microarray images for biological and medical investigation. In this work, nonparametric methods using kernel density estimation are applied to segment two-channel cDNA microarray images. This approach groups pixels into both a foreground and a background. The segmentation performance of this model is tested and evaluated with reference to 16 microarray data. In particular, spike genes with various contents are spotted in a microarray to examine and evaluate the accuracy of the segmentation results. Duplicated design is implemented to evaluate the accuracy of the model. The results of this study demonstrate that this method can cluster pixels and estimate statistics regarding spots with high accuracy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A comparative study of individual and ensemble majority vote cDNA microarray image segmentation schemes, originating from a spot-adjustable based restoration framework

The aim of this study was to comparatively evaluate the performances of various segmentation algorithms, in conjunction with a noise reduction step, for gene expression levels intensity extraction in cDNA microarray images. Different segmentation algorithms, based on histogram and unsupervised classification methods, which have never been previously employed in microarray image analysis, were e...

متن کامل

Segmentation and intensity estimation of microarray images using a gamma-t mixture model

MOTIVATION We present a new approach to the analysis of images for complementary DNA microarray experiments. The image segmentation and intensity estimation are performed simultaneously by adopting a two-component mixture model. One component of this mixture corresponds to the distribution of the background intensity, while the other corresponds to the distribution of the foreground intensity. ...

متن کامل

Neural Network-Based Learning Kernel for Automatic Segmentation of Multiple Sclerosis Lesions on Magnetic Resonance Images

Background: Multiple Sclerosis (MS) is a degenerative disease of central nervous system. MS patients have some dead tissues in their brains called MS lesions. MRI is an imaging technique sensitive to soft tissues such as brain that shows MS lesions as hyper-intense or hypo-intense signals. Since manual segmentation of these lesions is a laborious and time consuming task, automatic segmentation ...

متن کامل

ناحیه‌بندی مرز اندوکارد بطن چپ در تصاویر تشدید مغناطیسی قلبی با شدت روشنایی غیریکنواخت

The stochastic active contour scheme (STACS) is a well-known and frequently-used approach for segmentation of the endocardium boundary in cardiac magnetic resonance (CMR) images. However, it suffers significant difficulties with image inhomogeneity due to using a region-based term based on the global Gaussian probability density functions of the innerouter regions of the active ...

متن کامل

Multi-object segmentation using coupled nonparametric shape and relative pose priors

We present a new method for multi-object segmentation in a maximum a posteriori estimation framework. Our method is motivated by the observation that neighboring or coupling objects in images generate configurations and co-dependencies which could potentially aid in segmentation if properly exploited. Our approach employs coupled shape and inter-shape pose priors that are computed using trainin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of biomedical informatics

دوره 41 6  شماره 

صفحات  -

تاریخ انتشار 2008